Determining the in-plane Fermi surface topology in high T(c) superconductors using angle-dependent magnetic quantum oscillations.

نویسندگان

  • N Harrison
  • R D McDonald
چکیده

We propose a quantum oscillation experiment by which the rotation of an underdoped YBa(2)Cu(3)O(6+x) sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetries of electron and hole cylinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations. The criterion for the applicability of this method to the cuprate superconductors (as well as other layered metals) is that the difference in quantum oscillation frequency 2ΔF between the maximum (belly) and minimum (neck) extremal cross-sections of the corrugated Fermi surface exceeds |B|.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fermi surface of superconducting LaFePO determined from quantum oscillations.

We report extensive measurements of quantum oscillations in the normal state of the Fe-based superconductor LaFePO, (T(c) approximately 6 K) using low temperature torque magnetometry and transport in high static magnetic fields (45 T). We find that the Fermi surface is in broad agreement with the band-structure calculations with the quasiparticle mass enhanced by a factor approximately 2. The q...

متن کامل

Superconducting properties and Fermi-surface topology of the quasi-two-dimensional organic superconductor λ-(BETS)2GaCl4

The Fermi surface topology of the organic superconductor λ(BETS)2GaCl4 has been determined using the Shubnikov-de Haas and magnetic breakdown effects and angle-dependent magnetoresistance oscillations. The former experiments were carried out in pulsed fields of up to 60 T, whereas the latter employed quasistatic fields of up to 30 T. All of these data show that the Fermi-surface topology of λ-(...

متن کامل

Quantum oscillations probe the normal electronic states of novel superconductors.

In 2008, new classes of high-temperature superconductors containing iron have been discovered. These iron pnictides offer a new area of exploration and understanding of superconductivity. Quantum oscillations is a bulk probe that allows us to map out the full Fermi surface of a superconducting system in its normal metallic state. These oscillations are determined by the Landau quantization in h...

متن کامل

Magnetic field dependence of the superconducting gap node topology in non-centrosymmetric CePt3Si

Non-centrosymmetric superconductors, such as CePt3Si and Li2PtB2, are believed to have a line node in the energy gap arising from coexistence of s-wave and p-wave pairing. Using as an example CePt3Si we show that a weak c-axis magnetic field will remove this line node, since it has no topological stability against time-reversal symmetry breaking perturbations. Conversely a field in the a − b pl...

متن کامل

Fragile charge order in the nonsuperconducting ground state of the underdoped high-temperature superconductors.

The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 21 19  شماره 

صفحات  -

تاریخ انتشار 2009